
Cawdrey
Release 0.5.1

Several useful custom dictionaries for Python

Dominic Davis-Foster

Nov 22, 2023

Contents

1 Highlights 1

2 Other Dictionary Packages 3

3 Installation 5
3.1 from PyPI . 5
3.2 from Anaconda . 5
3.3 from GitHub . 5

4 AlphaDict 7
4.1 AlphaDict . 7
4.2 alphabetical_dict . 7

5 bdict 9
5.1 bdict . 9

6 frozendict 11
6.1 About . 11
6.2 Usage . 11
6.3 API Reference . 13
6.4 Copyright . 14

7 FrozenOrderedDict 15
7.1 About . 15
7.2 API Reference . 15
7.3 Copyright . 17

8 HeaderMapping 19
8.1 HeaderMapping . 19

9 NonelessDict 23
9.1 About . 23
9.2 API Reference . 23
9.3 Copyright . 25

10 Tally 27
10.1 _F . 27
10.2 SupportsMostCommon . 27
10.3 Tally . 28
10.4 Percentage . 29

11 Base Classes 31
11.1 About . 31

i

11.2 API Reference . 31

12 Functions 35
12.1 search_dict . 35

13 Contributing 37
13.1 Coding style . 37
13.2 Automated tests . 37
13.3 Type Annotations . 37
13.4 Build documentation locally . 38

14 Downloading source code 39
14.1 Building from source . 40

15 License 41

16 And Finally: 45

Python Module Index 47

Index 49

ii

Chapter

ONE

Highlights

• frozendict: An immutable dictionary that cannot be changed after creation.

• FrozenOrderedDict: An immutable OrderedDict where the order of keys is preserved, but that cannot
be changed after creation.

• AlphaDict: A FrozenOrderedDict where the keys are stored in alphabetical order.

• bdict: A dictionary where key, value pairs are stored both ways round.

• Tally: A subclass of collections.Counter with additional methods.

• HeaderMapping: A collections.abc.MutableMapping which supports duplicate, case-insentive
keys.

This package also provides two base classes for creating your own custom dictionaries:

• FrozenBase: An Abstract Base Class for frozen dictionaries.

• MutableBase: An Abstract Base Class for mutable dictionaries.

1

https://docs.python.org/3/library/collections.html#collections.OrderedDict
https://docs.python.org/3/library/collections.html#collections.Counter
https://docs.python.org/3/library/collections.abc.html#collections.abc.MutableMapping

Cawdrey, Release 0.5.1

2 Chapter 1. Highlights

Chapter

TWO

Other Dictionary Packages

If you’re looking to unflatten a dictionary, such as to go from this:

{"foo.bar": "val"}

to this:

{"foo": {"bar": "val"}}

check out unflatten, flattery or morph to accomplish that.

indexed provides an OrderedDict where the values can be accessed by their index as well as by their keys.

There’s also python-benedict, which provides a custom dictionary with keylist/keypath support, I/O shortcuts
(Base64, CSV, JSON, TOML, XML, YAML, pickle, query-string) and many utilities.

3

https://github.com/dairiki/unflatten
https://github.com/acg/python-flattery
https://github.com/metagriffin/morph
https://github.com/niklasf/indexed.py
https://github.com/fabiocaccamo/python-benedict

Cawdrey, Release 0.5.1

4 Chapter 2. Other Dictionary Packages

Chapter

THREE

Installation

3.1 from PyPI

$ python3 -m pip install cawdrey --user

3.2 from Anaconda

First add the required channels

$ conda config --add channels https://conda.anaconda.org/conda-forge
$ conda config --add channels https://conda.anaconda.org/domdfcoding

Then install

$ conda install cawdrey

3.3 from GitHub

$ python3 -m pip install git+https://github.com/domdfcoding/cawdrey@master --user

5

Cawdrey, Release 0.5.1

6 Chapter 3. Installation

Chapter

FOUR

AlphaDict

Provides AlphaDict, a frozen OrderedDict where the keys are stored alphabetically.

Classes:

AlphaDict([seq]) Initialize an immutable, alphabetised dictionary.

Functions:

alphabetical_dict(**kwargs) Returns an OrderedDict with the keys sorted alphabetically.

class AlphaDict(seq=None, **kwargs)
Bases: FrozenOrderedDict[~KT, ~VT]

Initialize an immutable, alphabetised dictionary.

The signature is the same as regular dictionaries.

• AlphaDict() -> new empty AlphaDict

• AlphaDict(mapping) -> new AlphaDict initialized from a mapping object’s (key, value) pairs

• AlphaDict(iterable) -> new AlphaDict initialized as if via:

d = {}
for k, v in iterable:

d[k] = v

• AlphaDict(**kwargs) -> new AlphaDict initialized with the name=value pairs in the keyword
argument list.

For example:

AlphaDict(one=1, two=2)

alphabetical_dict(**kwargs)
Returns an OrderedDict with the keys sorted alphabetically.

Parameters kwargs

Return type OrderedDict[str, ~T]

7

https://typing-extensions.readthedocs.io/en/latest/index.html#OrderedDict
https://docs.python.org/3/library/collections.html#collections.OrderedDict
https://docs.python.org/3/library/collections.html#collections.OrderedDict
https://docs.python.org/3/library/collections.html#collections.OrderedDict
https://docs.python.org/3/library/stdtypes.html#str

Cawdrey, Release 0.5.1

8 Chapter 4. AlphaDict

Chapter

FIVE

bdict

class bdict(seq=None, **kwargs)
Bases: UserDict

Returns a new dictionary initialized from an optional positional argument, and a possibly empty set of keyword
arguments.

Each key: value pair is entered into the dictionary in both directions, so you can perform lookups with
either the key or the value.

If no positional argument is given, an empty dictionary is created.

If a positional argument is given and it is a mapping object, a dictionary is created with the same key-value
pairs as the mapping object. Otherwise, the positional argument must be an iterable object. Each item in the
iterable must itself be an iterable with exactly two objects. The first object of each item becomes a key in the
new dictionary, and the second object the corresponding value.

If keyword arguments are given, the keyword arguments and their values are added to the dictionary created
from the positional argument.

If an attempt is made to add a key or value that already exists in the dictionary a ValueError will be raised.

Keys or values of None, True and False will be stored internally as "_None", "_True" and "_False"
respectively

Methods:

__contains__(key) Return key in self.
__delitem__(key) Delete self[key].
__getitem__(key) Return self[key].
__setitem__(key, val) Set self[key] to value.
clear() Removes all items from the bdict.
get(k[, default]) Return the value for k if k is in the dictionary, else default.
items() Returns a set-like object providing a view on the bdict's items.
keys() Returns a set-like object providing a view on the bdict's keys.
values() Returns an object providing a view on the bdict's values.

__contains__(key)
Return key in self.

Parameters key (object)

Return type bool

__delitem__(key)
Delete self[key].

Parameters key (~KT)

9

https://docs.python.org/3/library/collections.html#collections.UserDict
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#bool

Cawdrey, Release 0.5.1

__getitem__(key)
Return self[key].

Parameters key (~KT)

Return type ~VT

__setitem__(key, val)
Set self[key] to value.

Parameters

• key

• val

clear()
Removes all items from the bdict.

get(k, default=None)
Return the value for k if k is in the dictionary, else default.

Parameters

• k – The key to return the value for.

• default – The value to return if key is not in the dictionary. Default None.

Overloads

• get(k: ~KT) -> Optional[~VT]

• get(k: ~KT, default: Union[~VT, ~T]) -> Union[~VT, ~T]

items()
Returns a set-like object providing a view on the bdict's items.

Return type AbstractSet[Tuple[~KT, ~VT]]

keys()
Returns a set-like object providing a view on the bdict's keys.

Return type AbstractSet[~KT]

values()
Returns an object providing a view on the bdict's values.

Return type ValuesView[~VT]

10 Chapter 5. bdict

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.AbstractSet
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.AbstractSet
https://docs.python.org/3/library/typing.html#typing.ValuesView

Chapter

SIX

frozendict

6.1 About

frozendict is an immutable wrapper around dictionaries that implements the complete mapping interface. It can
be used as a drop-in replacement for dictionaries where immutability is desired.

Of course this is Python, and you can still poke around the object’s internals if you want.

The frozendict constructor mimics dict, and all of the expected interfaces (iter, len, repr, hash,
getitem) are provided. Note that a frozendict does not guarantee the immutability of its values, so the util-
ity of the hash method is restricted by usage.

The only difference is that the copy() method of frozendict takes variable keyword arguments, which will be
present as key/value pairs in the new, immutable copy.

6.2 Usage

>>> from cawdrey import frozendict
>>>
>>> fd = frozendict({ 'hello': 'World' })
>>>
>>> print fd
<frozendict {'hello': 'World'}>
>>>
>>> print fd['hello']
'World'
>>>
>>> print fd.copy(another='key/value')
<frozendict {'hello': 'World', 'another': 'key/value'}>
>>>

In addition, frozendict supports the + and - operands. If you add a dict-like object, a new frozendict will
be returned, equal to the old frozendict updated with the other object. Example:

>>> frozendict({"Sulla": "Marco", 2: 3}) + {"Sulla": "Marò", 4: 7}
<frozendict {'Sulla': 'Marò', 2: 3, 4: 7}>
>>>

You can also subtract an iterable from a frozendict. A new frozendict will be returned, without the keys that
are in the iterable. Examples:

>>> frozendict({"Sulla": "Marco", 2: 3}) - {"Sulla": "Marò", 4: 7}
<frozendict {'Sulla': 'Marco', 2: 3}>
>>> frozendict({"Sulla": "Marco", 2: 3}) - [2, 4]
<frozendict {'Sulla': 'Marco'}>
>>>

11

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

Cawdrey, Release 0.5.1

Some other examples:

>>> from cawdrey import frozendict
>>> fd = frozendict({"Sulla": "Marco", "Hicks": "Bill"})
>>> print(fd)
<frozendict {'Sulla': 'Marco', 'Hicks': 'Bill'}>
>>> print(fd["Sulla"])
Marco
>>> fd["Bim"]
KeyError: 'Bim'
>>> len(fd)
2
>>> "Sulla" in fd
True
>>> "Sulla" not in fd
False
>>> "Bim" in fd
False
>>> hash(fd)
835910019049608535
>>> fd_unhashable = frozendict({1: []})
>>> hash(fd_unhashable)
TypeError: unhashable type: 'list'
>>> fd2 = frozendict({"Hicks": "Bill", "Sulla": "Marco"})
>>> print(fd2)
<frozendict {'Hicks': 'Bill', 'Sulla': 'Marco'}>
>>> fd2 is fd
False
>>> fd2 == fd
True
>>> frozendict()
<frozendict {}>
>>> frozendict(Sulla="Marco", Hicks="Bill")
<frozendict {'Sulla': 'Marco', 'Hicks': 'Bill'}>
>>> frozendict((("Sulla", "Marco"), ("Hicks", "Bill")))
<frozendict {'Sulla': 'Marco', 'Hicks': 'Bill'}>
>>> fd.get("Sulla")
'Marco'
>>> print(fd.get("God"))
None
>>> tuple(fd.keys())
('Sulla', 'Hicks')
>>> tuple(fd.values())
('Marco', 'Bill')
>>> tuple(fd.items())
(('Sulla', 'Marco'), ('Hicks', 'Bill'))
>>> iter(fd)
<dict_keyiterator object at 0x7feb75c49188>
>>> frozendict.fromkeys(["Marco", "Giulia"], "Sulla")
<frozendict {'Marco': 'Sulla', 'Giulia': 'Sulla'}>
>>> fd["Sulla"] = "Silla"
TypeError: 'frozendict' object does not support item assignment
>>> del fd["Sulla"]
TypeError: 'frozendict' object does not support item deletion
>>> fd.clear()
AttributeError: 'frozendict' object has no attribute 'clear'
>>> fd.pop("Sulla")
AttributeError: 'frozendict' object has no attribute 'pop'

(continues on next page)

12 Chapter 6. frozendict

Cawdrey, Release 0.5.1

(continued from previous page)

>>> fd.popitem()
AttributeError: 'frozendict' object has no attribute 'popitem'
>>> fd.setdefault("Sulla")
AttributeError: 'frozendict' object has no attribute 'setdefault'
>>> fd.update({"Bim": "James May"})
AttributeError: 'frozendict' object has no attribute 'update'

6.3 API Reference

class frozendict(*args, **kwargs)
Bases: FrozenBase[~KT, ~VT]

An immutable wrapper around dictionaries that implements the complete collections.abc.Mapping
interface. It can be used as a drop-in replacement for dictionaries where immutability is desired.

Methods:

__add__(other, *args, **kwargs) If you add a dict-like object, a new frozendict will be returned,
equal to the old frozendict updated with the other object.

__and__(other, *args, **kwargs) Returns a new frozendict, that is the intersection between
self and other.

__sub__(other, *args, **kwargs) The method will create a new frozendict, result of the
subtraction by other.

copy(*args, **kwargs) Return a copy of the dictionary.
sorted(*args[, by]) Return a new frozendict, with the element insertion sorted.

__add__(other, *args, **kwargs)
If you add a dict-like object, a new frozendict will be returned, equal to the old frozendict updated with
the other object.

__and__(other, *args, **kwargs)
Returns a new frozendict, that is the intersection between self and other.

If other is a dict-like object, the intersection will contain only the items in common.

If other is another iterable, the intersection will contain the items of self which keys are in other.

Iterables of pairs are not managed differently. This is for consistency.

Beware! The final order is dictated by the order of other. This allows the coder to change the order of the
original frozendict.

The last two behaviours breaks voluntarily the dict.items() API, for consistency and practical rea-
sons.

__sub__(other, *args, **kwargs)
The method will create a new frozendict, result of the subtraction by other.

If other is a dict-like, the result will have the items of the frozendict that are not in common with
other.

If other is another type of iterable, the result will have the items of frozendict without the keys that
are in other.

6.3. API Reference 13

https://docs.python.org/3/library/collections.abc.html#collections.abc.Mapping
https://docs.python.org/3/library/stdtypes.html#dict.items
https://docs.python.org/3/library/stdtypes.html#dict

Cawdrey, Release 0.5.1

copy(*args, **kwargs)
Return a copy of the dictionary.

Return type ~_D

sorted(*args, by='keys', **kwargs)
Return a new frozendict, with the element insertion sorted. The signature is the same as the builtin
sorted function, except for the additional parameter by, that is 'keys' by default and can also be
'values' and 'items'. So the resulting frozendict can be sorted by keys, values or items.

If you want more complicated sorts read the documentation of sorted.

The the parameters passed to the key function are the keys of the frozendict if by = "keys", and
are the items otherwise.

Note: Sorting by keys and items achieves the same effect. The only difference is when you want to
customize the sorting passing a custom key function. You could achieve the same result using by =
"values", since also sorting by values passes the items to the key function. But this is an implementation
detail and you should not rely on it.

6.4 Copyright

Based on https://github.com/slezica/python-frozendict and
https://github.com/mredolatti/python-frozendict .
Copyright (c) 2012 Santiago Lezica
Licensed under the MIT License:

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documen-
tation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PAR-
TICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFT-
WARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Also based on https://github.com/Marco-Sulla/python-frozendict
Copyright (c) Marco Sulla
Licensed under the GNU Lesser General Public License Version 3

14 Chapter 6. frozendict

https://github.com/slezica/python-frozendict
https://github.com/mredolatti/python-frozendict
https://github.com/Marco-Sulla/python-frozendict
https://www.gnu.org/licenses/lgpl-3.0.en.html

Chapter

SEVEN

FrozenOrderedDict

7.1 About

FrozenOrderedDict is a immutable wrapper around an OrderedDict. It is similar to frozendict, and with
regards to immutability it solves the same problems:

• Because dictionaries are mutable, they are not hashable and cannot be used in sets or as dictionary keys.

• Nasty bugs can and do occur when mutable data structures are passed around.

It can be initialized just like a dict or OrderedDict. Once instantiated, an instance of FrozenOrderedDict
cannot be altered, since it does not implement the MutableMapping interface.

FrozenOrderedDict implements the Mapping interface, so can be used like a normal dictionary in most cases.

In order to modify the contents of a FrozenOrderedDict, a new instance must be created. The easiest way to do
that is by calling the .copy() method. It will return a new instance of FrozenOrderedDict initialized using the
following steps:

1. A copy of the wrapped OrderedDict instance will be created.

2. If any arguments or keyword arguments are passed to the .copy() method, they will be used to create another
OrderedDict instance, which will then be used to update the copy made in step #1.

3. Finally, self.__class__() will be called, passing the copy as the only argument.

7.2 API Reference

class FrozenOrderedDict(*args, **kwargs)
Bases: FrozenBase[~KT, ~VT]

An immutable OrderedDict. It can be used as a drop-in replacement for dictionaries where immutability is
desired.

Methods:

__contains__(key) Return key in self.
__getitem__(key) Return self[key].
copy(*args, **kwargs) Return a copy of the FrozenOrderedDict.
get(k[, default]) Return the value for k if k is in the dictionary, else default.
items() Returns a set-like object providing a view on the FrozenOrderedDict's

items.
keys() Returns a set-like object providing a view on the FrozenOrderedDict's

keys.
values() Returns an object providing a view on the FrozenOrderedDict's values.

15

https://docs.python.org/3/library/collections.html#collections.OrderedDict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/collections.html#collections.OrderedDict
https://docs.python.org/3/library/collections.abc.html#collections.abc.MutableMapping
https://docs.python.org/3/library/collections.abc.html#collections.abc.Mapping
https://docs.python.org/3/library/collections.html#collections.OrderedDict
https://docs.python.org/3/library/collections.html#collections.OrderedDict

Cawdrey, Release 0.5.1

__contains__(key)
Return key in self.

Parameters key (object)

Return type bool

__getitem__(key)
Return self[key].

Parameters key (~KT)

Return type ~VT

copy(*args, **kwargs)
Return a copy of the FrozenOrderedDict.

Parameters

• args

• kwargs

get(k, default=None)
Return the value for k if k is in the dictionary, else default.

Parameters

• k – The key to return the value for.

• default – The value to return if key is not in the dictionary. Default None.

Overloads

• get(k: ~KT) -> Optional[~VT]

• get(k: ~KT, default: Union[~VT, ~T]) -> Union[~VT, ~T]

items()
Returns a set-like object providing a view on the FrozenOrderedDict's items.

Return type AbstractSet[Tuple[~KT, ~VT]]

keys()
Returns a set-like object providing a view on the FrozenOrderedDict's keys.

Return type AbstractSet[~KT]

values()
Returns an object providing a view on the FrozenOrderedDict's values.

Return type ValuesView[~VT]

16 Chapter 7. FrozenOrderedDict

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.AbstractSet
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.AbstractSet
https://docs.python.org/3/library/typing.html#typing.ValuesView

Cawdrey, Release 0.5.1

7.3 Copyright

Based on https://github.com/slezica/python-frozendict and
https://github.com/mredolatti/python-frozendict .
Copyright (c) 2012 Santiago Lezica
Licensed under the MIT License:

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documen-
tation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PAR-
TICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFT-
WARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Also based on https://github.com/Marco-Sulla/python-frozendict
Copyright (c) Marco Sulla
Licensed under the GNU Lesser General Public License Version 3

Also based on https://github.com/wsmith323/frozenordereddict
Copyright (c) 2015 Warren Smith
Licensed under the MIT License:

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documen-
tation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PAR-
TICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFT-
WARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

7.3. Copyright 17

https://github.com/slezica/python-frozendict
https://github.com/mredolatti/python-frozendict
https://github.com/Marco-Sulla/python-frozendict
https://www.gnu.org/licenses/lgpl-3.0.en.html
https://github.com/wsmith323/frozenordereddict

Cawdrey, Release 0.5.1

18 Chapter 7. FrozenOrderedDict

Chapter

EIGHT

HeaderMapping

collections.abc.MutableMapping which supports duplicate, case-insentive keys.

New in version 0.4.0.

Classes:

HeaderMapping() Provides a MutableMapping interface to a list of headers, such
as those used in an email message.

class HeaderMapping
Bases: MutableMapping[str, ~VT]

Provides a MutableMapping interface to a list of headers, such as those used in an email message.

See also: email.message.Message and email.message.EmailMessage

MutableMapping interface, which assumes there is exactly one occurrence of the header per mapping. Some
headers do in fact appear multiple times, and for those headers you must use the get_all() method to obtain
all values for that key.

Methods:

__contains__(name) Returns whether name is in the HeaderMapping.
__delitem__(name) Delete all occurrences of a header, if present.
__getitem__(name) Get a header value.
__iter__() Returns an iterator over the keys in the HeaderMapping.
__len__() Return the total number of keys, including duplicates.
__repr__() Return a string representation of the HeaderMapping.
__setitem__(name, val) Set the value of a header.
get(k[, default]) Get a header value.
get_all(k[, default]) Return a list of all the values for the named field.
items() Get all the message’s header fields and values.
keys() Return a list of all the message’s header field names.
values() Return a list of all the message’s header values.

__contains__(name)
Returns whether name is in the HeaderMapping.

Parameters name (object)

Return type bool

19

https://docs.python.org/3/library/collections.abc.html#collections.abc.MutableMapping
https://docs.python.org/3/library/collections.abc.html#collections.abc.MutableMapping
https://docs.python.org/3/library/typing.html#typing.MutableMapping
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/collections.abc.html#collections.abc.MutableMapping
https://docs.python.org/3/library/email.compat32-message.html#email.message.Message
https://docs.python.org/3/library/email.message.html#email.message.EmailMessage
https://docs.python.org/3/library/collections.abc.html#collections.abc.MutableMapping
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#bool

Cawdrey, Release 0.5.1

__delitem__(name)
Delete all occurrences of a header, if present.

Does not raise an exception if the header is missing.

Parameters name (str)

__getitem__(name)
Get a header value.

Note: If the header appears multiple times, exactly which occurrence gets returned is undefined. Use the
get_all() method to get all values matching a header field name.

Parameters name (str)

Return type ~VT

__iter__()
Returns an iterator over the keys in the HeaderMapping.

Return type Iterator[str]

__len__()
Return the total number of keys, including duplicates.

Return type int

__repr__()
Return a string representation of the HeaderMapping.

New in version 0.4.1.

Return type str

__setitem__(name, val)
Set the value of a header.

Parameters

• name (str)

• val (~VT)

get(k, default=None)
Get a header value.

Like __getitem__(), but returns default instead of None when the field is missing.

Parameters

• k (str)

• default – Default None.

Overloads

• get(k: str) -> Optional[~VT]

20 Chapter 8. HeaderMapping

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Iterator
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional

Cawdrey, Release 0.5.1

• get(k: str, default: Union[~VT, ~T]) -> Union[~VT, ~T]

get_all(k, default=None)
Return a list of all the values for the named field.

These will be sorted in the order they appeared in the original message, and may contain duplicates. Any
fields deleted and re-inserted are always appended to the header list.

If no such fields exist, default is returned.

Parameters

• k (str)

• default – Default None.

Overloads

• get_all(k: str) -> Optional[List[~VT]]

• get_all(k: str, default: Union[~VT, ~T]) -> Union[List[~VT], ~T]

items()
Get all the message’s header fields and values.

These will be sorted in the order they appeared in the original message, or were added to the message, and
may contain duplicates. Any fields deleted and re-inserted are always appended to the header list.

Return type List[Tuple[str, ~VT]]

keys()
Return a list of all the message’s header field names.

These will be sorted in the order they appeared in the original message, or were added to the message, and
may contain duplicates. Any fields deleted and re-inserted are always appended to the header list.

Return type List[str]

values()
Return a list of all the message’s header values.

These will be sorted in the order they appeared in the original message, or were added to the message, and
may contain duplicates. Any fields deleted and re-inserted are always appended to the header list.

Return type List[~VT]

21

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List

Cawdrey, Release 0.5.1

22 Chapter 8. HeaderMapping

Chapter

NINE

NonelessDict

9.1 About

NonelessDict is a wrapper around dict that will check if a value is None/empty/False, and not add the key in
that case.

The class has a method set_with_strict_none_check() that can be used to set a value and check only for
None values.

NonelessOrderedDict is based on NonelessDict and OrderedDict, so the order of key insertion is pre-
served.

9.2 API Reference

Classes:

NonelessDict(*args, **kwargs) A wrapper around dict that will check if a value is
None/empty/False, and not add the key in that case.

NonelessOrderedDict(*args, **kwargs) A wrapper around OrderedDict that will check if a value is
None/empty/False, and not add the key in that case.

Data:

_ND Invariant TypeVar bound to
cawdrey.nonelessdict.NonelessDict.

_NOD Invariant TypeVar bound to
cawdrey.nonelessdict.NonelessOrderedDict.

class NonelessDict(*args, **kwargs)
Bases: MutableBase[~KT, ~VT]

A wrapper around dict that will check if a value is None/empty/False, and not add the key in that case.

Use the set_with_strict_none_check() method to check only for None.

Methods:

__setitem__(key, value) Set self[key] to value.
copy(**add_or_replace) Return a copy of the dictionary.
set_with_strict_none_check(key, value) Set key in the dictionary to value, but skipping

None values.

23

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/collections.html#collections.OrderedDict
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/typing.html#typing.TypeVar
https://docs.python.org/3/library/typing.html#typing.TypeVar
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None

Cawdrey, Release 0.5.1

__setitem__(key, value)
Set self[key] to value.

copy(**add_or_replace)
Return a copy of the dictionary.

Return type ~_ND

set_with_strict_none_check(key, value)
Set key in the dictionary to value, but skipping None values.

Parameters

• key (~KT)

• value (Optional[~VT])

class NonelessOrderedDict(*args, **kwargs)
Bases: MutableBase[~KT, ~VT]

A wrapper around OrderedDict that will check if a value is None/empty/False, and not add the key in that case.
Use the set_with_strict_none_check function to check only for None

Methods:

__setitem__(key, value) Set self[key] to value.
copy(*args, **kwargs) Return a copy of the dictionary.
set_with_strict_none_check(key, value) Set key in the dictionary to value, but skipping

None values.

__setitem__(key, value)
Set self[key] to value.

copy(*args, **kwargs)
Return a copy of the dictionary.

Return type ~_NOD

set_with_strict_none_check(key, value)
Set key in the dictionary to value, but skipping None values.

Parameters

• key (~KT)

• value (Optional[~VT])

_ND = TypeVar(_ND, bound=NonelessDict)
Type: TypeVar

Invariant TypeVar bound to cawdrey.nonelessdict.NonelessDict.

_NOD = TypeVar(_NOD, bound=NonelessOrderedDict)
Type: TypeVar

Invariant TypeVar bound to cawdrey.nonelessdict.NonelessOrderedDict.

24 Chapter 9. NonelessDict

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.TypeVar
https://docs.python.org/3/library/typing.html#typing.TypeVar
https://docs.python.org/3/library/typing.html#typing.TypeVar
https://docs.python.org/3/library/typing.html#typing.TypeVar

Cawdrey, Release 0.5.1

9.3 Copyright

Based on https://github.com/slezica/python-frozendict and
https://github.com/jerr0328/python-helpfuldicts .
Copyright (c) 2012 Santiago Lezica
Licensed under the MIT License:

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documen-
tation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PAR-
TICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFT-
WARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

9.3. Copyright 25

https://github.com/slezica/python-frozendict
https://github.com/jerr0328/python-helpfuldicts

Cawdrey, Release 0.5.1

26 Chapter 9. NonelessDict

Chapter

TEN

Tally

Subclass of collections.Counter with additional methods.

New in version 0.3.0.

Data:

_F Invariant TypeVar constrained to float, int and numbers.Real.

Classes:

SupportsMostCommon typing.Protocol for classes which support a collections.Counter-like
collections.Counter.most_common() method.

Tally([iterable]) Subclass of collections.Counter with additional methods.
Percentage Provides a dictionary interface, but with collections.Counter’s

collections.Counter.most_common() method.

_F = TypeVar(_F, float, int, Real)
Type: TypeVar

Invariant TypeVar constrained to float, int and numbers.Real.

protocol SupportsMostCommon
Bases: Protocol[~KT]

typing.Protocol for classes which support a collections.Counter-like collections.
Counter.most_common() method.

This protocol is runtime checkable.

Classes that implement this protocol must have the following methods / attributes:

items()
Returns an iterator over the mapping’s items (as (key, value) pairs).

Return type Iterable[Tuple[~KT, float]]

most_common(n=None)
List the n most common elements and their counts from the most common to the least. If n is None then
list all element counts.

>>> Counter('abracadabra').most_common(3)
[('a', 5), ('b', 2), ('r', 2)]

Parameters n (Optional[int]) – Default None.

Return type Union[List[Tuple[~KT, float]], List[Tuple[~KT, int]]]

27

https://docs.python.org/3/library/collections.html#collections.Counter
https://docs.python.org/3/library/typing.html#typing.TypeVar
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/numbers.html#numbers.Real
https://docs.python.org/3/library/typing.html#typing.Protocol
https://docs.python.org/3/library/collections.html#collections.Counter
https://docs.python.org/3/library/collections.html#collections.Counter.most_common
https://docs.python.org/3/library/collections.html#collections.Counter
https://docs.python.org/3/library/collections.html#collections.Counter
https://docs.python.org/3/library/collections.html#collections.Counter.most_common
https://docs.python.org/3/library/typing.html#typing.TypeVar
https://docs.python.org/3/library/typing.html#typing.TypeVar
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/numbers.html#numbers.Real
https://docs.python.org/3/library/typing.html#typing.Protocol
https://docs.python.org/3/library/typing.html#typing.Protocol
https://docs.python.org/3/library/collections.html#collections.Counter
https://docs.python.org/3/library/collections.html#collections.Counter.most_common
https://docs.python.org/3/library/collections.html#collections.Counter.most_common
https://www.python.org/dev/peps/pep-0544/#runtime-checkable-decorator-and-narrowing-types-by-isinstance
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int

Cawdrey, Release 0.5.1

class Tally(iterable=None, /, **kwds)
Bases: Counter[~KT]

Subclass of collections.Counter with additional methods.

New in version 0.3.0.

Methods:

as_percentage() Returns the Tally as a collections.OrderedDict
comprising the count for each element as a percentage of the
sum of all elements.

get_percentage(item[, default]) Returns the count for item, as a percentage of the sum of all
elements.

most_common([n]) List the n most common elements and their counts from the
most common to the least.

Attributes:

total Returns the total count for all elements.

as_percentage()
Returns the Tally as a collections.OrderedDict comprising the count for each element as a
percentage of the sum of all elements.

Important: The sum of the dictionary’s values may not add up to exactly 1.0 due to limitations of
floating-point numbers.

Return type Percentage[~KT]

property total
Returns the total count for all elements.

Return type int

get_percentage(item, default=None)
Returns the count for item, as a percentage of the sum of all elements.

Parameters

• item (~KT)

• default (Optional[~_F]) – A default percentage (as a float) to return if item is not in
the dictionary. Default None.

Return type Union[None, ~_F, float]

Overloads

• get_percentage(item: ~KT) -> Optional[float]

• get_percentage(item: ~KT, default: ~_F) -> Union[~_F, float]

28 Chapter 10. Tally

https://docs.python.org/3/library/typing.html#typing.Counter
https://docs.python.org/3/library/collections.html#collections.Counter
https://docs.python.org/3/library/collections.html#collections.OrderedDict
https://docs.python.org/3/library/collections.html#collections.OrderedDict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#float

Cawdrey, Release 0.5.1

most_common(n=None)
List the n most common elements and their counts from the most common to the least. If n is None then
list all element counts.

>>> Tally('abracadabra').most_common(3)
[('a', 5), ('b', 2), ('r', 2)]

Parameters n (Optional[int]) – Default None.

Return type List[Tuple[~KT, int]]

class Percentage
Bases: Dict[~KT, float]

Provides a dictionary interface, but with collections.Counter’s collections.Counter.
most_common() method.

Represents the return type of cawdrey.tally.Tally.as_percentage().

Methods:

most_common([n]) List the n most common elements and their counts from the
most common to the least.

most_common(n=None)
List the n most common elements and their counts from the most common to the least. If n is None then
list all element counts.

>>> Tally('abracadabra').as_percentage().most_common(3)
[('a', 0.45454545454545453), ('b', 0.18181818181818182), ('r', 0.
→˓18181818181818182)]

Parameters n (Optional[int]) – Default None.

Return type List[Tuple[~KT, float]]

29

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/collections.html#collections.Counter
https://docs.python.org/3/library/collections.html#collections.Counter.most_common
https://docs.python.org/3/library/collections.html#collections.Counter.most_common
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#float

Cawdrey, Release 0.5.1

30 Chapter 10. Tally

Chapter

ELEVEN

Base Classes

11.1 About

FrozenBase is the base class for frozendict and FrozenOrderedDict. If you wish to construct your own
frozen dictionary classes, you may inherit from this class.

11.2 API Reference

Classes:

DictWrapper() Abstract Mixin class for classes that wrap a dict object or similar.
FrozenBase(*args, **kwargs) Abstract Base Class for Frozen dictionaries.
MutableBase(*args, **kwargs) Abstract Base Class for mutable dictionaries.

Data:

KT Invariant TypeVar.
T Invariant TypeVar.
VT Invariant TypeVar.
_D Invariant TypeVar bound to cawdrey.base.DictWrapper.

class DictWrapper
Bases: Mapping[~KT, ~VT]

Abstract Mixin class for classes that wrap a dict object or similar.

Methods:

__contains__(key) Return key in self.
__getitem__(key) Return self[key].
__iter__() Iterates over the dictionary’s keys.
__len__() Returns the number of keys in the dictionary.
__repr__() Return a string representation of the DictWrapper.
copy(*args, **kwargs) Return a copy of the dictionary.
get(k[, default]) Return the value for k if k is in the dictionary, else default.
items() Returns a set-like object providing a view on the dictionary’s items.
keys() Returns a set-like object providing a view on the dictionary’s keys.
values() Returns an object providing a view on the bdict's values.

31

https://docs.python.org/3/library/typing.html#typing.TypeVar
https://docs.python.org/3/library/typing.html#typing.TypeVar
https://docs.python.org/3/library/typing.html#typing.TypeVar
https://docs.python.org/3/library/typing.html#typing.TypeVar
https://docs.python.org/3/library/typing.html#typing.Mapping

Cawdrey, Release 0.5.1

__contains__(key)
Return key in self.

Parameters key (object)

Return type bool

__getitem__(key)
Return self[key].

Parameters key (~KT)

Return type ~VT

__iter__()
Iterates over the dictionary’s keys.

Return type Iterator[~KT]

__len__()
Returns the number of keys in the dictionary.

Return type int

__repr__()
Return a string representation of the DictWrapper.

Return type str

abstract copy(*args, **kwargs)
Return a copy of the dictionary.

Return type ~_D

get(k, default=None)
Return the value for k if k is in the dictionary, else default.

Parameters

• k – The key to return the value for.

• default – The value to return if key is not in the dictionary. Default None.

Overloads

• get(k: ~KT) -> Optional[~VT]

• get(k: ~KT, default: Union[~VT, ~T]) -> Union[~VT, ~T]

items()
Returns a set-like object providing a view on the dictionary’s items.

Return type AbstractSet[Tuple[~KT, ~VT]]

keys()
Returns a set-like object providing a view on the dictionary’s keys.

Return type AbstractSet[~KT]

32 Chapter 11. Base Classes

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Iterator
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.AbstractSet
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.AbstractSet

Cawdrey, Release 0.5.1

values()
Returns an object providing a view on the bdict's values.

Return type ValuesView[~VT]

class FrozenBase(*args, **kwargs)
Bases: DictWrapper[~KT, ~VT]

Abstract Base Class for Frozen dictionaries.

Used by frozendict and FrozenOrderedDict.

Custom subclasses must implement at a minimum __init__, copy, fromkeys.

Methods:

fromkeys(iterable[, value]) Create a new dictionary with keys from iterable and values set to
value.

classmethod fromkeys(iterable, value=None)
Create a new dictionary with keys from iterable and values set to value.

Return type FrozenBase[~KT, ~VT]

Overloads

• fromkeys(iterable) -> FrozenBase[~KT, Any]

• fromkeys(iterable, value: ~VT) -> FrozenBase[~KT, ~VT]

KT = TypeVar(KT)
Type: TypeVar

Invariant TypeVar.

typing.TypeVar used for annotating key types in mappings.

class MutableBase(*args, **kwargs)
Bases: DictWrapper[~KT, ~VT], MutableMapping[~KT, ~VT]

Abstract Base Class for mutable dictionaries.

Used by NonelessDict and NonelessOrderedDict.

Custom subclasses must implement at a minimum __init__, copy, fromkeys.

Methods:

__delitem__(key) Delete self[key].
__setitem__(key, value) Set self[key] to value.
fromkeys(iterable[, value]) Create a new dictionary with keys from iterable and values set to

value.

__delitem__(key)
Delete self[key].

__setitem__(key, value)

11.2. API Reference 33

https://docs.python.org/3/library/typing.html#typing.ValuesView
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.TypeVar
https://docs.python.org/3/library/typing.html#typing.TypeVar
https://docs.python.org/3/library/typing.html#typing.TypeVar
https://docs.python.org/3/library/typing.html#typing.MutableMapping

Cawdrey, Release 0.5.1

Set self[key] to value.

classmethod fromkeys(iterable, value=None)
Create a new dictionary with keys from iterable and values set to value.

Return type MutableBase[~KT, ~VT]

Overloads

• fromkeys(iterable) -> MutableBase[~KT, Any]

• fromkeys(iterable, value: ~VT) -> MutableBase[~KT, ~VT]

T = TypeVar(T)
Type: TypeVar

Invariant TypeVar.

VT = TypeVar(VT)
Type: TypeVar

Invariant TypeVar.

typing.TypeVar used for annotating value types in mappings.

_D = TypeVar(_D, bound=DictWrapper)
Type: TypeVar

Invariant TypeVar bound to cawdrey.base.DictWrapper.

34 Chapter 11. Base Classes

https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.TypeVar
https://docs.python.org/3/library/typing.html#typing.TypeVar
https://docs.python.org/3/library/typing.html#typing.TypeVar
https://docs.python.org/3/library/typing.html#typing.TypeVar
https://docs.python.org/3/library/typing.html#typing.TypeVar
https://docs.python.org/3/library/typing.html#typing.TypeVar
https://docs.python.org/3/library/typing.html#typing.TypeVar

Chapter

TWELVE

Functions

General utility functions.

Functions:

search_dict(dictionary, regex) Return the subset of the dictionary whose keys match
the regex.

search_dict(dictionary, regex)
Return the subset of the dictionary whose keys match the regex.

Parameters

• dictionary (Mapping[str, Any])

• regex (Union[str, Pattern])

Return type Dict[str, Any]

35

https://docs.python.org/3/library/typing.html#typing.Mapping
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Pattern
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any

Cawdrey, Release 0.5.1

36 Chapter 12. Functions

Chapter

THIRTEEN

Contributing

Cawdrey uses tox to automate testing and packaging, and pre-commit to maintain code quality.

Install pre-commit with pip and install the git hook:

$ python -m pip install pre-commit
$ pre-commit install

13.1 Coding style

formate is used for code formatting.

It can be run manually via pre-commit:

$ pre-commit run formate -a

Or, to run the complete autoformatting suite:

$ pre-commit run -a

13.2 Automated tests

Tests are run with tox and pytest. To run tests for a specific Python version, such as Python 3.6:

$ tox -e py36

To run tests for all Python versions, simply run:

$ tox

13.3 Type Annotations

Type annotations are checked using mypy. Run mypy using tox:

$ tox -e mypy

37

https://tox.readthedocs.io
https://pre-commit.com
https://formate.readthedocs.io

Cawdrey, Release 0.5.1

13.4 Build documentation locally

The documentation is powered by Sphinx. A local copy of the documentation can be built with tox:

$ tox -e docs

38 Chapter 13. Contributing

Chapter

FOURTEEN

Downloading source code

The Cawdrey source code is available on GitHub, and can be accessed from the following URL: https:
//github.com/domdfcoding/cawdrey

If you have git installed, you can clone the repository with the following command:

$ git clone https://github.com/domdfcoding/cawdrey

Cloning into 'cawdrey'...
remote: Enumerating objects: 47, done.
remote: Counting objects: 100% (47/47), done.
remote: Compressing objects: 100% (41/41), done.
remote: Total 173 (delta 16), reused 17 (delta 6), pack-reused 126
Receiving objects: 100% (173/173), 126.56 KiB | 678.00 KiB/s, done.
Resolving deltas: 100% (66/66), done.

Alternatively, the code can be downloaded in a ‘zip’ file by clicking:
Clone or download –> Download Zip

Fig. 1: Downloading a ‘zip’ file of the source code

39

https://github.com/domdfcoding/cawdrey
https://github.com/domdfcoding/cawdrey

Cawdrey, Release 0.5.1

14.1 Building from source

The recommended way to build Cawdrey is to use tox:

$ tox -e build

The source and wheel distributions will be in the directory dist.

If you wish, you may also use pep517.build or another PEP 517-compatible build tool.

40 Chapter 14. Downloading source code

https://tox.readthedocs.io/en/latest/
https://pypi.org/project/pep517/
https://www.python.org/dev/peps/pep-0517

Chapter

FIFTEEN

License

Cawdrey is licensed under the GNU Lesser General Public License v3.0

Permissions of this copyleft license are conditioned on making available complete source code of licensed works
and modifications under the same license or the GNU GPLv3. Copyright and license notices must be preserved.
Contributors provide an express grant of patent rights. However, a larger work using the licensed work through
interfaces provided by the licensed work may be distributed under different terms and without source code for the
larger work.

Permissions

• Commercial use – The licensed material and derivatives may be used for commercial purposes.

• Modification – The licensed material may be modified.

• Distribution – The licensed material may be distributed.

• Patent use – This license provides an express grant of patent rights from contributors.

• Private use – The licensed material may be used and modified in private.

Conditions

• License and copyright notice – A copy of the license and copyright notice must be included with the licensed
material.

• Disclose source – Source code must be made available when the licensed material is distributed.

• State changes – Changes made to the licensed material must be documented.

• Same license (library) – Modifications must be released under the same license when distributing the licensed
material. In some cases a similar or related license may be used, or this condition may not apply to works that
use the licensed material as a library.

Limitations

• Liability – This license includes a limitation of liability.

• Warranty – This license explicitly states that it does NOT provide any warranty.

See more information on choosealicense.com ⇒

GNU LESSER GENERAL PUBLIC LICENSE
Version 3, 29 June 2007

Copyright (C) 2007 Free Software Foundation, Inc. <https://fsf.org/>
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

(continues on next page)

41

https://choosealicense.com/licenses/lgpl-3.0/
https://choosealicense.com/licenses/lgpl-3.0/

Cawdrey, Release 0.5.1

(continued from previous page)

This version of the GNU Lesser General Public License incorporates
the terms and conditions of version 3 of the GNU General Public
License, supplemented by the additional permissions listed below.

0. Additional Definitions.

As used herein, "this License" refers to version 3 of the GNU Lesser
General Public License, and the "GNU GPL" refers to version 3 of the GNU
General Public License.

"The Library" refers to a covered work governed by this License,
other than an Application or a Combined Work as defined below.

An "Application" is any work that makes use of an interface provided
by the Library, but which is not otherwise based on the Library.
Defining a subclass of a class defined by the Library is deemed a mode
of using an interface provided by the Library.

A "Combined Work" is a work produced by combining or linking an
Application with the Library. The particular version of the Library
with which the Combined Work was made is also called the "Linked
Version".

The "Minimal Corresponding Source" for a Combined Work means the
Corresponding Source for the Combined Work, excluding any source code
for portions of the Combined Work that, considered in isolation, are
based on the Application, and not on the Linked Version.

The "Corresponding Application Code" for a Combined Work means the
object code and/or source code for the Application, including any data
and utility programs needed for reproducing the Combined Work from the
Application, but excluding the System Libraries of the Combined Work.

1. Exception to Section 3 of the GNU GPL.

You may convey a covered work under sections 3 and 4 of this License
without being bound by section 3 of the GNU GPL.

2. Conveying Modified Versions.

If you modify a copy of the Library, and, in your modifications, a
facility refers to a function or data to be supplied by an Application
that uses the facility (other than as an argument passed when the
facility is invoked), then you may convey a copy of the modified
version:

a) under this License, provided that you make a good faith effort to
ensure that, in the event an Application does not supply the
function or data, the facility still operates, and performs
whatever part of its purpose remains meaningful, or

b) under the GNU GPL, with none of the additional permissions of
this License applicable to that copy.

3. Object Code Incorporating Material from Library Header Files.
(continues on next page)

42 Chapter 15. License

Cawdrey, Release 0.5.1

(continued from previous page)

The object code form of an Application may incorporate material from
a header file that is part of the Library. You may convey such object
code under terms of your choice, provided that, if the incorporated
material is not limited to numerical parameters, data structure
layouts and accessors, or small macros, inline functions and templates
(ten or fewer lines in length), you do both of the following:

a) Give prominent notice with each copy of the object code that the
Library is used in it and that the Library and its use are
covered by this License.

b) Accompany the object code with a copy of the GNU GPL and this license
document.

4. Combined Works.

You may convey a Combined Work under terms of your choice that,
taken together, effectively do not restrict modification of the
portions of the Library contained in the Combined Work and reverse
engineering for debugging such modifications, if you also do each of
the following:

a) Give prominent notice with each copy of the Combined Work that
the Library is used in it and that the Library and its use are
covered by this License.

b) Accompany the Combined Work with a copy of the GNU GPL and this license
document.

c) For a Combined Work that displays copyright notices during
execution, include the copyright notice for the Library among
these notices, as well as a reference directing the user to the
copies of the GNU GPL and this license document.

d) Do one of the following:

0) Convey the Minimal Corresponding Source under the terms of this
License, and the Corresponding Application Code in a form
suitable for, and under terms that permit, the user to
recombine or relink the Application with a modified version of
the Linked Version to produce a modified Combined Work, in the
manner specified by section 6 of the GNU GPL for conveying
Corresponding Source.

1) Use a suitable shared library mechanism for linking with the
Library. A suitable mechanism is one that (a) uses at run time
a copy of the Library already present on the user's computer
system, and (b) will operate properly with a modified version
of the Library that is interface-compatible with the Linked
Version.

e) Provide Installation Information, but only if you would otherwise
be required to provide such information under section 6 of the
GNU GPL, and only to the extent that such information is
necessary to install and execute a modified version of the
Combined Work produced by recombining or relinking the

(continues on next page)

43

Cawdrey, Release 0.5.1

(continued from previous page)

Application with a modified version of the Linked Version. (If
you use option 4d0, the Installation Information must accompany
the Minimal Corresponding Source and Corresponding Application
Code. If you use option 4d1, you must provide the Installation
Information in the manner specified by section 6 of the GNU GPL
for conveying Corresponding Source.)

5. Combined Libraries.

You may place library facilities that are a work based on the
Library side by side in a single library together with other library
facilities that are not Applications and are not covered by this
License, and convey such a combined library under terms of your
choice, if you do both of the following:

a) Accompany the combined library with a copy of the same work based
on the Library, uncombined with any other library facilities,
conveyed under the terms of this License.

b) Give prominent notice with the combined library that part of it
is a work based on the Library, and explaining where to find the
accompanying uncombined form of the same work.

6. Revised Versions of the GNU Lesser General Public License.

The Free Software Foundation may publish revised and/or new versions
of the GNU Lesser General Public License from time to time. Such new
versions will be similar in spirit to the present version, but may
differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the
Library as you received it specifies that a certain numbered version
of the GNU Lesser General Public License "or any later version"
applies to it, you have the option of following the terms and
conditions either of that published version or of any later version
published by the Free Software Foundation. If the Library as you
received it does not specify a version number of the GNU Lesser
General Public License, you may choose any version of the GNU Lesser
General Public License ever published by the Free Software Foundation.

If the Library as you received it specifies that a proxy can decide
whether future versions of the GNU Lesser General Public License shall
apply, that proxy's public statement of acceptance of any version is
permanent authorization for you to choose that version for the
Library.

44 Chapter 15. License

Chapter

SIXTEEN

And Finally:

Why “Cawdrey”?

45

https://en.wikipedia.org/wiki/Robert_Cawdrey

Cawdrey, Release 0.5.1

46 Chapter 16. And Finally:

Python Module Index

c
cawdrey.alphadict, 7
cawdrey.base, 31
cawdrey.header_mapping, 19
cawdrey.nonelessdict, 23
cawdrey.tally, 27
cawdrey.utils, 35

47

Cawdrey, Release 0.5.1

48 Python Module Index

Index

Symbols
_D (in module cawdrey.base), 34
_F (in module cawdrey.tally), 27
_ND (in module cawdrey.nonelessdict), 24
_NOD (in module cawdrey.nonelessdict), 24
__add__() (frozendict method), 13
__and__() (frozendict method), 13
__contains__() (DictWrapper method), 31
__contains__() (FrozenOrderedDict method), 15
__contains__() (HeaderMapping method), 19
__contains__() (bdict method), 9
__delitem__() (HeaderMapping method), 20
__delitem__() (MutableBase method), 33
__delitem__() (bdict method), 9
__getitem__() (DictWrapper method), 32
__getitem__() (FrozenOrderedDict method), 16
__getitem__() (HeaderMapping method), 20
__getitem__() (bdict method), 10
__iter__() (DictWrapper method), 32
__iter__() (HeaderMapping method), 20
__len__() (DictWrapper method), 32
__len__() (HeaderMapping method), 20
__repr__() (DictWrapper method), 32
__repr__() (HeaderMapping method), 20
__setitem__() (HeaderMapping method), 20
__setitem__() (MutableBase method), 33
__setitem__() (NonelessDict method), 23
__setitem__() (NonelessOrderedDict method), 24
__setitem__() (bdict method), 10
__sub__() (frozendict method), 13

A
alphabetical_dict() (in module

cawdrey.alphadict), 7
AlphaDict (class in cawdrey.alphadict), 7
as_percentage() (Tally method), 28

B
bdict (class in cawdrey._bdict), 9

C
cawdrey.alphadict

module, 7

cawdrey.base
module, 31

cawdrey.header_mapping
module, 19

cawdrey.nonelessdict
module, 23

cawdrey.tally
module, 27

cawdrey.utils
module, 35

clear() (bdict method), 10
copy() (DictWrapper method), 32
copy() (frozendict method), 14
copy() (FrozenOrderedDict method), 16
copy() (NonelessDict method), 24
copy() (NonelessOrderedDict method), 24

D
DictWrapper (class in cawdrey.base), 31

F
fromkeys() (FrozenBase class method), 33
fromkeys() (MutableBase class method), 34
FrozenBase (class in cawdrey.base), 33
frozendict (class in cawdrey._frozendict), 13
FrozenOrderedDict (class in

cawdrey.frozenordereddict), 15

G
get() (bdict method), 10
get() (DictWrapper method), 32
get() (FrozenOrderedDict method), 16
get() (HeaderMapping method), 20
get_all() (HeaderMapping method), 21
get_percentage() (Tally method), 28
GNU Lesser General Public License

v3.0, 41

H
HeaderMapping (class in cawdrey.header_mapping),

19

I
items() (bdict method), 10

49

Cawdrey, Release 0.5.1

items() (DictWrapper method), 32
items() (FrozenOrderedDict method), 16
items() (HeaderMapping method), 21
items() (SupportsMostCommon method), 27

K
keys() (bdict method), 10
keys() (DictWrapper method), 32
keys() (FrozenOrderedDict method), 16
keys() (HeaderMapping method), 21
KT (in module cawdrey.base), 33

M
module

cawdrey.alphadict, 7
cawdrey.base, 31
cawdrey.header_mapping, 19
cawdrey.nonelessdict, 23
cawdrey.tally, 27
cawdrey.utils, 35

most_common() (Percentage method), 29
most_common() (SupportsMostCommon method), 27
most_common() (Tally method), 29
MutableBase (class in cawdrey.base), 33

N
NonelessDict (class in cawdrey.nonelessdict), 23
NonelessOrderedDict (class in

cawdrey.nonelessdict), 24

P
Percentage (class in cawdrey.tally), 29
Python Enhancement Proposals

PEP 517, 40

S
search_dict() (in module cawdrey.utils), 35
set_with_strict_none_check() (NonelessDict

method), 24
set_with_strict_none_check()

(NonelessOrderedDict method), 24
sorted() (frozendict method), 14
SupportsMostCommon (protocol in cawdrey.tally),

27

T
T (in module cawdrey.base), 34
Tally (class in cawdrey.tally), 28
total() (Tally property), 28

V
values() (bdict method), 10
values() (DictWrapper method), 33

values() (FrozenOrderedDict method), 16
values() (HeaderMapping method), 21
VT (in module cawdrey.base), 34

50 Index

	Contents
	Highlights
	Other Dictionary Packages
	Installation
	from PyPI
	from Anaconda
	from GitHub

	AlphaDict
	AlphaDict
	alphabetical_dict

	bdict
	bdict

	frozendict
	About
	Usage
	API Reference
	Copyright

	FrozenOrderedDict
	About
	API Reference
	Copyright

	HeaderMapping
	HeaderMapping

	NonelessDict
	About
	API Reference
	Copyright

	Tally
	_F
	SupportsMostCommon
	Tally
	Percentage

	Base Classes
	About
	API Reference

	Functions
	search_dict

	Contributing
	Coding style
	Automated tests
	Type Annotations
	Build documentation locally

	Downloading source code
	Building from source

	License
	And Finally:
	Python Module Index
	Index

