cawdrey
Release 0.1.6

Dominic Davis-Foster

Jun 18, 2020

1 Contents
2 Other Dictionary Packages

3 Installation

3.1 AlphaDict
3.2 bdict
3.3 frozendict.
3.4 FrozenOrderedDict .
3.5 NonelessDict
3.6 BaseClass

3.7 Downloading source ¢
3.8 Building from source

4 And Finally:
Python Module Index

Index

CONTENTS

0de . . . e e

[c BRI |

[ee}

11
13
14
16
17

21

23

25

cawdrey, Release 0.1.6

Several useful custom dictionaries for Python

Docs
Tests
PyPI
Anaconda
Activity
Other

CONTENTS

https://cawdrey.readthedocs.io/en/latest/?badge=latest
https://github.com/domdfcoding/cawdrey/actions?query=workflow%3A%22Docs+Check%22
https://travis-ci.org/domdfcoding/cawdrey
https://github.com/domdfcoding/cawdrey/actions?query=workflow%3A%22Windows+Tests%22
https://github.com/domdfcoding/cawdrey/actions?query=workflow%3A%22macOS+Tests%22
https://coveralls.io/github/domdfcoding/cawdrey?branch=master
https://www.codefactor.io/repository/github/domdfcoding/cawdrey
https://pypi.org/project/cawdrey/
https://pypi.org/project/cawdrey/
https://pypi.org/project/cawdrey/
https://pypi.org/project/cawdrey/
https://anaconda.org/domdfcoding/cawdrey
https://anaconda.org/domdfcoding/cawdrey
https://github.com/domdfcoding/cawdrey/commit/master
https://github.com/domdfcoding/cawdrey/pulse
https://github.com/domdfcoding/cawdrey/blob/master/LICENSE
https://requires.io/github/domdfcoding/cawdrey/requirements/?branch=master

cawdrey, Release 0.1.6

2 CONTENTS

CHAPTER
ONE

CONTENTS

* frozendict: An immutable dictionary that cannot be changed after creation.

* FrozenOrderedDict: Animmutable OrderedDict where the order of keys is preserved, but that cannot
be changed after creation.

* AlphaDict: AFrozenOrderedDict where the keys are stored in alphabetical order.

* bdict: A dictionary where key, value pairs are stored both ways round.

This package also provides two base classes for creating your own custom dictionaries:
* FrozenBase: An Abstract Base Class for Frozen dictionaries.

e MutableBase: An Abstract Base Class for mutable dictionaries.

cawdrey, Release 0.1.6

4 Chapter 1. Contents

CHAPTER
TWO

OTHER DICTIONARY PACKAGES

If you’re looking to unflatten a dictionary, such as to go from this:

’{‘foo.bar': 'val'}
to this:
’{‘foo': {'bar': 'val'}}

check out unflatten, flattery or morph to accomplish that.
indexed provides an OrederedDict where the values can be accessed by their index as well as by their keys.

There’s also python-benedict, which provides a custom dictionary with keylist/keypath support, I/O shortcuts
(Base64, CSV, JSON, TOML, XML, YAML, pickle, query-string) and many utilities.

https://github.com/dairiki/unflatten
https://github.com/acg/python-flattery
https://github.com/metagriffin/morph
https://github.com/niklasf/indexed.py
https://github.com/fabiocaccamo/python-benedict

cawdrey, Release 0.1.6

6 Chapter 2. Other Dictionary Packages

CHAPTER
THREE

INSTALLATION

from PyPI

$ pip install cawdrey
from Anaconda

First add the required channels

$ conda config —--add channels http://conda.anaconda.org/domdfcoding
$ conda config —-add channels http://conda.anaconda.org/conda-forge

Then install
$ conda install cawdrey
from GitHub

$ pip install git+https://github.com/domdfcoding/cawdrey@master

3.1 AlphaDict

3.1.1 About
3.1.2 Usage

3.1.3 API Reference

Provides AlphaDict, a frozen OrderedDict where the keys are stored alphabetically.
class cawdrey.alphadict.AlphaDict (seq=None, **kwargs)

cawdrey.alphadict.alphabetical_dict (**kwargs)

cawdrey, Release 0.1.6

3.2 bdict

3.2.1 About
3.2.2 Usage

3.2.3 API Reference

class cawdrey.bdict (seq=None, **kwargs)
Returns a new dictionary initialized from an optional positional argument and a possibly empty set of keyword
arguments.

Each key:value pair is entered into the dictionary in both directions, so you can perform lookups with either the
key or the value.

If no positional argument is given, an empty dictionary is created. If a positional argument is given and it is
a mapping object, a dictionary is created with the same key-value pairs as the mapping object. Otherwise, the
positional argument must be an iterable object. Each item in the iterable must itself be an iterable with exactly
two objects. The first object of each item becomes a key in the new dictionary, and the second object the
corresponding value.

If keyword arguments are given, the keyword arguments and their values are added to the dictionary created
from the positional argument.

If an attempt is made to add a key or value that already exists in the dictionary a ValueError will be raised

Keys or values of None, True and False will be stored internally as "_None","_True" and "_False"
respectively

Based on https://stackoverflow.com/a/1063393 by https://stackoverflow.com/users/9493/brian

Improved May 2020 suggestions from https://treyhunner.com/2019/04/
why-you-shouldnt-inherit-from-list-and-dict-in-python/

3.3 frozendict

3.3.1 About

frozendict is an immutable wrapper around dictionaries that implements the complete mapping interface. It can
be used as a drop-in replacement for dictionaries where immutability is desired.

Of course, this is python, and you can still poke around the object’s internals if you want.

The frozendict constructor mimics dict, and all of the expected interfaces (iter, len, repr, hash,
getitem) are provided. Note that a frozendict does not guarantee the immutability of its values, so the util-
ity of hash method is restricted by usage.

The only difference is that the copy () method of frozendict takes variable keyword arguments, which will be
present as key/value pairs in the new, immutable copy.

8 Chapter 3. Installation

https://stackoverflow.com/a/1063393
https://stackoverflow.com/users/9493/brian
https://treyhunner.com/2019/04/why-you-shouldnt-inherit-from-list-and-dict-in-python/
https://treyhunner.com/2019/04/why-you-shouldnt-inherit-from-list-and-dict-in-python/

cawdrey, Release 0.1.6

3.3.2 Usage

>>> from frozendict import frozendict

>>>
>>> fd = frozendict ({ 'hello': 'World' })

>>>

>>> print fd

<frozendict {'hello': 'World'}>

>>>

>>> print fd['hello']

'World'

>>>

>>> print fd.copy (another='"key/value')

<frozendict {'hello': 'World', 'another': 'key/value'}>
>>>

In addition, frozendict supports the + and - operands. If you add a dict-like object, a new frozendict will be
returned, equal to the old frozendict updated with the other object. Example:

>>> frozendict ({"Sulla": "Marco", 2: 3}) + {"Sulla": "Maro", 4: 7}
<frozendict {'Sulla': 'Maro', 2: 3, 4: T7}>
>>>

You can also subtract an iterable from a frozendict. A new frozendict will be returned, without the keys that
are in the iterable. Examples:

>>> frozendict ({"Sulla": "Marco", 2: 3}) - {"Sulla": "Maro", 4: 7}
<frozendict {'Sulla': 'Marco', 2: 3}>

>>> frozendict ({"Sulla": "Marco", 2: 3}) - [2, 4]

<frozendict {'Sulla': 'Marco'}>

Some other examples:

>>> from frozendict import frozendict

>>> fd = frozendict ({"Sulla": "Marco", "Hicks": "Bill"})
>>> print (fd)

<frozendict 'Sulla': 'Marco', 'Hicks': 'Bill'}>
>>> print (fd["Sulla"])

Marco

>>> fd["Bim"]

KeyError: 'Bim'

>>> len (fd)

2

>>> "Sulla" in fd

True

>>> "Sulla" not in fd

False

>>> "Bim" in fd

False

>>> hash (fd)

835910019049608535

>>> fd_unhashable = frozendict ({1: []1})

>>> hash (fd_unhashable)

TypeError: unhashable type: 'list'

>>> fd2 = frozendict ({"Hicks": "Bill", "Sulla": "Marco"})
>>> print (£d2)

(continues on next page)

3.3. frozendict 9

cawdrey, Release 0.1.6

(continued from previous page)

<frozendict {'Hicks': 'Bill', 'Sulla': '"Marco'}>
>>> fd2 is fd

False

>>> fd2 == fd

True

>>> frozendict ()

<frozendict {}>

>>> frozendict (Sulla="Marco", Hicks="Bill")
<frozendict {'Sulla': 'Marco', 'Hicks': 'Bill'}>
>>> frozendict ((("Sulla", "Marco"), ("Hicks", "Bill")))
<frozendict 'Sulla': 'Marco', 'Hicks': 'Bill'}>
>>> fd.get ("Sulla")

'Marco'’

>>> print (fd.get ("God"))

None

>>> tuple (fd.keys())

('"Sulla', 'Hicks')

>>> tuple (fd.values())

("Marco', 'Bill'")

>>> tuple (fd.items())

(('Sulla', 'Marco'), ('Hicks', 'Bill'))

>>> iter (fd)

<dict_keyiterator object at 0x7feb75c49188>

>>> frozendict.fromkeys (["Marco", "Giulia"], "Sulla")

<frozendict {'Marco': 'Sulla', 'Giulia': 'Sulla'}>

>>> fd["Sulla"] = "Ssilla"

TypeError: 'frozendict' object does not support item assignment
>>> del fd["Sulla"]

TypeError: 'frozendict' object does not support item deletion
>>> fd.clear()

AttributeError: 'frozendict' object has no attribute 'clear'
>>> fd.pop("Sulla")

AttributeError: 'frozendict' object has no attribute 'pop'

>>> fd.popitem()

AttributeError: 'frozendict' object has no attribute 'popitem'
>>> fd.setdefault ("Sulla")

AttributeError: 'frozendict' object has no attribute 'setdefault'
>>> fd.update ({"Bim": "James May"})

AttributeError: 'frozendict' object has no attribute 'update'

3.3.3 API Reference

class cawdrey.frozendict (*args, **kwds)
An immutable wrapper around dictionaries that implements the complete collections.Mapping interface.
It can be used as a drop-in replacement for dictionaries where immutability is desired.

copy (**add_or_replace)

dict_cls
aliasof builtins.dict

sorted (*args, by="keys', **kwargs)
Return a new frozendict, with the element insertion sorted. The signature is the same as the builtin
sorted function, except for the additional parameter by, that is "keys" by default and can also be
"values" and "items". So the resulting frozendict can be sorted by keys, values or items.

If you want more complicated sorts read the documentation of sorted.

10 Chapter 3. Installation

cawdrey, Release 0.1.6

The the parameters passed to the key function are the keys of the frozendict if by = "keys", and
are the items otherwise.

Note: Sorting by keys and items achieves the same effect. The only difference is when you want to
customize the sorting passing a custom key function. You could achieve the same result using by =
"values", since also sorting by values passes the items to the key function. But this is an implementation
detail and you should not rely on it.

3.3.4 Copyright

Based on https://github.com/slezica/python-frozendict and https://github.com/mredolatti/python-frozendict .
Copyright (c) 2012 Santiago Lezica
Licensed under the MIT License:

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documen-
tation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PAR-
TICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFT-
WARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Also based on https://github.com/Marco-Sulla/python-frozendict
Copyright (c) Marco Sulla

Licensed under the GNU Lesser General Public License Version 3

3.4 FrozenOrderedDict

3.4.1 About

FrozenOrderedDict is aimmutable wrapper around an OrderedDict.
FrozenOrderedDict is similar to frozendict, and with regards to immutability it solves the same problems:
* Because dictionaries are mutable, they are not hashable and cannot be used in sets or as dictionary keys.

* Nasty bugs can and do occur when mutable data structures are passed around.

3.4. FrozenOrderedDict 11

https://github.com/slezica/python-frozendict
https://github.com/mredolatti/python-frozendict
https://github.com/Marco-Sulla/python-frozendict
https://www.gnu.org/licenses/lgpl-3.0.en.html

cawdrey, Release 0.1.6

It can be initialized just like a dict or OrderedDict. Once instantiated, an instance of FrozenOrderedDict
cannot be altered, since it does not implement the Mut ableMapping interface.

It does implement the Mapping interface, so can be used just like a normal dictionary in most cases.

In order to modify the contents of a FrozenOrderedDict, a new instance must be created. The easiest way to do
that is by calling the .copy() method. It will return a new instance of FrozenOrderedDict initialized using the
following steps:

1. A copy of the wrapped OrderedDict instance will be created.

2. If any arguments or keyword arguments are passed to the .copy() method, they will be used to create another
OrderedDict instance, which will then be used to update the copy made in step #1.

3. Finally, self.__class__() will be called, passing the copy as the only argument.

3.4.2 API Reference

class cawdrey.frozenordereddict.FrozenOrderedDict (*args, **kwds)
An immutable OrderedDict. It can be used as a drop-in replacement for dictionaries where immutability is
desired.

copy (*args, **kwargs)

dict_cls
alias of collections.OrderedDict

3.4.3 Copyright

Based on https://github.com/slezica/python-frozendict and https://github.com/mredolatti/python-frozendict .
Copyright (c) 2012 Santiago Lezica
Licensed under the MIT License:

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documen-
tation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PAR-
TICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFT-
WARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Also based on https://github.com/Marco-Sulla/python-frozendict Copyright (c) Marco Sulla Licensed under the GNU
Lesser General Public License Version 3

12 Chapter 3. Installation

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/collections.html#collections.OrderedDict
https://docs.python.org/3/library/collections.html#collections.OrderedDict
https://github.com/slezica/python-frozendict
https://github.com/mredolatti/python-frozendict
https://github.com/Marco-Sulla/python-frozendict
https://www.gnu.org/licenses/lgpl-3.0.en.html
https://www.gnu.org/licenses/lgpl-3.0.en.html

cawdrey, Release 0.1.6

Also based on https://github.com/wsmith323/frozenordereddict
Copyright (c) 2015 Warren Smith
Licensed under the MIT License:

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documen-
tation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PAR-
TICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFT-
WARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

3.5 NonelessDict

3.5.1 About

NonelessDict is a wrapper around dict that will check if a value is None/empty/False, and not add the key in
that case.

The class has a method set_with strict_none_check () that can be used to set a value and check only for
None values.

NonelessOrderedDict is based NonelessDict and OrderedDict, so the order of key insertion is pre-
served.

3.5.2 Usage

3.5.3 API Reference

Provides frozendict, a simple immutable dictionary.

class cawdrey.nonelessdict .NonelessDict (*args, **kwds)
A wrapper around dict that will check if a value is None/empty/False, and not add the key in that case. Use the
set_with_strict_none_check function to check only for None

copy (**add_or_replace)

dict_cls
aliasof builtins.dict

3.5. NonelessDict 13

https://github.com/wsmith323/frozenordereddict
https://docs.python.org/3/library/collections.html#collections.OrderedDict

cawdrey, Release 0.1.6

set_with_strict_none_check (key, value)
Return type None

class cawdrey.nonelessdict .NonelessOrderedDict (*args, **kwds)
A wrapper around OrderedDict that will check if a value is None/empty/False, and not add the key in that case.
Use the set_with_strict_none_check function to check only for None

copy (*args, **kwargs)

dict_cls
aliasof collections.OrderedDict

set_with_strict_none_check (key, value)

Return type None

3.5.4 Copyright

Based on https://github.com/slezica/python-frozendict and https://github.com/jerr0328/python-helpfuldicts .
Copyright (c) 2012 Santiago Lezica
Licensed under the MIT License:

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documen-
tation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PAR-
TICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFT-
WARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

3.6 Base Class

3.6.1 About

FrozenBase is the base class for frozendict and FrozenOrderedDict. If you wish to construct your own
frozen dictionary classes, you may wish to inherit from this class.

14 Chapter 3. Installation

https://docs.python.org/3/library/collections.html#collections.OrderedDict
https://github.com/slezica/python-frozendict
https://github.com/jerr0328/python-helpfuldicts

cawdrey, Release 0.1.6

3.6.2 Usage
3.6.3 API Reference

class cawdrey.base.FrozenBase (*args, **kwds)
Abstract Base Class for Frozen dictionaries

Used by frozendict and FrozenOrderedDict.

Custom subclasses must implement at a minimum __init__, copy, fromkeys.

__abstractmethods__ = frozenset ({'__init__ ', 'copy'})
__annotations___ = {'dict_cls': typing.Union[typing.Type, NoneType]}
__args__ = None

__contains___ (key)
Return type Any
__copy___(*args, **kwargs)
__dict___ = mappingproxy({'__module__ ': 'cawdrey.base', '__ _annotations__ ': {'dict_cls

__eq__ (other)
Return self==value.

__extra = None

__getitem _ (key)
Return type Any

__hash_ = None

abstract __init__ (*args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

__iter_ ()
_len__ ()

Return type int
__module__ = 'cawdrey.base'

static __ _new__ (cls, *args, **kwds)

Create and return a new object. See help(type) for accurate signature.

_ _next_in mro_
aliasof builtins.object

__orig_bases__ = (cawdrey.base.DictWrapper[~KT, ~VT],)
__origin__ = None
__parameters__ = (~KT, ~VT)
__repr_ ()
Return repr(self).

Return type str
_ _reversed__ = None

__slots_ = ()

3.6. Base Class 15

https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

cawdrey, Release 0.1.6

__subclasshook__ ()
Abstract classes can override this to customize issubclass().

This is invoked early on by abc. ABCMeta.__subclasscheck__ (). It should return True, False or NotImple-
mented. If it returns NotImplemented, the normal algorithm is used. Otherwise, it overrides the normal
algorithm (and the outcome is cached).

__tree_hash___ = -9223366114991902158

__weakref
list of weak references to the object (if defined)

_abc_cache = <_weakrefset.WeakSet object>
_abc_generic_negative_cache = <_weakrefset.WeakSet object>
_abc_generic_negative_cache_version = 42
_abc_negative_cache = <_weakrefset.WeakSet object>
_abc_negative_cache_version = 42

_abc_registry = < _weakrefset.WeakSet object>

_gorg
alias of FrozenBase

abstract copy (*args, **kwargs)
dict_cls: Optional[Type] = None

classmethod fromkeys (*args, **kwargs)
Returns a new dict with keys from iterable and values equal to value.

get (k[,d]) — DIk]if k in D, else d. d defaults to None.
items () — a set-like object providing a view on D’s items
keys () — aset-like object providing a view on D’s keys

values () — an object providing a view on D’s values

3.7 Downloading source code

The cawdrey source code resides on publicly accessible GitHub servers, and can be accessed from the following
URL: https://github.com/domdfcoding/cawdrey”

If you have git installed, you can clone the repository with the following command:

git clone https://github.com/domdfcoding/cawdrey"

Cloning into 'cawdrey'...

remote: Enumerating objects: 47, done.

remote: Counting objects: 100% (47/47), done.

remote: Compressing objects: 100% (41/41), done.

remote: Total 173 (delta 16), reused 17 (delta 6), pack-reused 126
Receiving objects: 100% (173/173), 126.56 KiB | 678.00 KiB/s, done.
Resolving deltas: 100% (66/66), done.

vV V.V V V V V \n

Alternatively, the code can be downloaded in a ‘zip’ file by clicking:
Clone or download —> Download Zip

16 Chapter 3. Installation

https://github.com/domdfcoding/cawdrey

cawdrey, Release 0.1.6

Create new flle Upload files Find File Clone or download ~

Clone with HTTPS @ Use SSH
Use Git or checkout with SVN using the web URL.

https://github.com/domdfcoding/pyms.

-

Download ZIP

a day ago

Fig. 1: Downloading a ‘zip’ file of the source code

3.8 Building from source

To build the cawdrey package from source using setuptools, run the following command:

$ python3 setup.py sdist bdist_wheel

setuptools is configured using the file setup.py.

Different formats are available for built distributions

Format Description Notes

gztar gzipped tar file (. tar.gz) default on Unix
bztar bzipped tar file (. tar.bz2)

xztar bzipped tar file (. tar.bz2)

tar tar file (. tar)

zip zip file (. zip) default on Windows
wininst | self-extracting ZIP file for Windows

msi Microsoft Installer

setup.py

#!/usr/bin/env python
This file is managed by ‘git_helper . Don't edit it directly

(continues on next page)

3.8. Building from source 17

20

21

22

23

24

25

26

27

28

29

30

32

33

34

cawdrey, Release 0.1.6

(continued from previous page)

mn "Setup Script mon

3rd party
from setuptools import find_packages, setup

this package
from pkginfo__ import x # pylint: disable=wildcard-import

setup (
author=author,
author_email=author_email,
classifiers=classifiers,
description=short_desc,
entry_points=entry_points,
extras_require=extras_require,
include_package_data=True,
install_requires=install_requires,
license=__license_ ,
long_description=long_description,
name=pypi_name,
packages=find_packages (exclude=("tests", "doc-source")),
project_urls=project_urls,
py_modules=py_modules,
python_requires=">=3.6",
url=web,
version=__version__,
keywords=keywords,
zip_safe=False,

__pkginfo__.py

This file is managed by ‘git_helper’ . Don't edit it directly
Copyright (C) 2020 Dominic Davis-Foster <dominic@davis-foster.co.uk>

This file is distributed under the same license terms as the program it came with.
There will probably be a file called LICEN[S/C]E in the same directory as this,,
~file.

#
#
#
#
#

#

In any case, this program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

#

This script based on https://github.com/rocky/python-uncompyleé6/blob/master/ _
—pkginfo__ .py

#

stdlib

import pathlib

"__copyright__",
"__version__ ",

"modname",

(continues on next page)

18 Chapter 3. Installation

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

)

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

cawdrey, Release 0.1.6

(continued from previous page)

"pypi_name",
"py_modules",
"entry_points",

" license_ ",
"short_desc",
"author",
"author_email",
"github_username",
"web",
"github_url",
"project_urls",
"repo_root",
"long_description",
"install_requires",
"extras_require",
"classifiers",
"keywords",
"import_name",

]

__copyright__ = """

2019-2020 Dominic Davis-Foster <dominic@davis—-foster.co.uk>
mnon

__version__ = "0.1.6"
modname = "cawdrey"
pypi_name = "cawdrey"
import_name = "cawdrey"
py_modules = []
entry_points = {

"console_scripts": []

}

_ _license_ = "GNU Lesser General Public License v3 or later (LGPLv3+)"
short_desc = "Several useful custom dictionaries for Python "
__author___ = author = "Dominic Davis-Foster"
author_email = "dominic@davis—-foster.co.uk"
github_username = "domdfcoding"
web = github_url = f"https://github.com/domdfcoding/cawdrey"
project_urls = {
"Documentation": f"https://cawdrey.readthedocs.io",
"Issue Tracker": f"{github_url}/issues",

"Source Code": github_url,

}
repo_root = pathlib.Path(__file_) .parent

Get info from files; set: long _description

long_description = (repo_root / "README.rst") .read_text (encoding="utf-8") .replace("0.
—1.6", __version__) + '\n'
conda_description = """Several useful custom dictionaries

Before installing please ensure you have added the following channels: domdfcoding,

—conda—-forge""" (continues on next page)

3.8. Building from source 19

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

cawdrey, Release 0.1.6

(continued from previous page)

__all__ .append("conda_description™)
install_requires = (repo_root / "requirements.txt").read_text (encoding="utf-8") .split (
—'\n")
extras_require = {'all': []}
classifiers = [
'Development Status :: 3 - Alpha',
'Intended Audience :: Developers',
'License :: OSI Approved :: GNU Lesser General Public License v3 or,
—~later (LGPLv3+)',
'Operating System :: OS Independent',
'Programming Language :: Python',
'Programming Language :: Python :: 3.6"',
'Programming Language :: Python 3.7,
'Programming Language :: Python :: 3.8",
'Programming Language :: Python 3 Oonly"',
'Programming Language :: Python :: Implementation :: CPython',
'Programming Language :: Python :: Implementation :: PyPy',
'Topic :: Software Development :: Libraries :: Python Modules',
'Topic :: Utilities',
'Programming Language :: Python :: 3.9"',
'Typing :: Typed',
]
keywords = "frozenordereddict orderedfrozendict frozen immutable frozendict dict

—dictionary map Mapping MappingProxyType"

View the Function Index or browse the Source Code.

Browse the GitHub Repository

20 Chapter 3. Installation

_modules/index.html
https://github.com/domdfcoding/cawdrey

CHAPTER
FOUR

AND FINALLY:

Why “Cawdrey”?

21

https://en.wikipedia.org/wiki/Robert_Cawdrey

cawdrey, Release 0.1.6

22 Chapter 4. And Finally:

PYTHON MODULE INDEX

C

cawdrey.alphadict, 7
cawdrey.nonelessdict, 13

23

cawdrey, Release 0.1.6

24 Python Module Index

Symbols

__abstractmethods___ (cawdrey.base.FrozenBase
attribute), 15
__annotations___ (cawdrey.base.FrozenBase at-

tribute), 15
__args__ (cawdrey.base.FrozenBase attribute), 15
__contains__ () (cawdrey.base.FrozenBase method),
15
__copy___() (cawdrey.base.FrozenBase method), 15
__dict__ (cawdrey.base.FrozenBase attribute), 15
__eq__ () (cawdrey.base.FrozenBase method), 15
__extra__ (cawdrey.base.FrozenBase attribute), 15
__getitem__ () (cawdrey.base.FrozenBase method),
15
__hash__ (cawdrey.base.FrozenBase attribute), 15
__init__ () (cawdrey.base.FrozenBase method), 15
__iter__ () (cawdrey.base.FrozenBase method), 15
len__ () (cawdrey.base.FrozenBase method), 15

__module___ (cawdrey.base.FrozenBase attribute), 15

__new___() (cawdrey.base.FrozenBase static method),
15

__next_in_mro___ (cawdrey.base.FrozenBase at-
tribute), 15

__orig_bases__ (cawdrey.base.FrozenBase at-

tribute), 15
__origin__ (cawdrey.base.FrozenBase attribute), 15
__parameters___ (cawdrey.base.FrozenBase at-
tribute), 15
__repr___ () (cawdrey.base.FrozenBase method), 15
__reversed___ (cawdrey.base.FrozenBase attribute),
15
__slots__ (cawdrey.base.FrozenBase attribute), 15

___subclasshook__ () (cawdrey.base.FrozenBase
method), 15

__tree_hash___ (cawdrey.base.FrozenBase attribute),
16

__weakref__ (cawdrey.base.FrozenBase attribute), 16
_abc_cache (cawdrey.base.FrozenBase attribute), 16
_abc_generic_negative_cache (caw-
drey.base.FrozenBase attribute), 16
_abc_generic_negative_cache_version
(cawdrey.base.FrozenBase attribute), 16

INDEX

_abc_negative_cache (cawdrey.base.FrozenBase
attribute), 16

_abc_negative_cache_version
drey.base.FrozenBase attribute), 16

_abc_registry (cawdrey.base.FrozenBase attribute),
16

_gorg (cawdrey.base.FrozenBase attribute), 16

A

alphabetical_dict ()
drey.alphadict), 7
AlphaDict (class in cawdrey.alphadict), 7

B

bdict (class in cawdrey), 8

C

cawdrey.alphadict

module, 7
cawdrey.nonelessdict

module, 13
copy () (cawdrey.base.FrozenBase method), 16
copy () (cawdrey.frozendict method), 10
copy () (cawdrey.frozenordereddict.FrozenOrderedDict
method), 12
(cawdrey.nonelessdict.NonelessDict method),
13

copy ()

(caw-

(in module caw-

copy ()

(cawdrey.nonelessdict.NonelessOrderedDict
method), 14

D

dict_cls (cawdrey.base.FrozenBase attribute), 16

dict_cls (cawdrey.frozendict attribute), 10

dict_cls (cawdrey.frozenordereddict. FrozenOrderedDict
attribute), 12

dict_cls (cawdrey.nonelessdict.NonelessDict
tribute), 13

dict_cls (cawdrey.nonelessdict.NonelessOrderedDict
attribute), 14

at-

F

fromkeys () (cawdrey.base.FrozenBase class method),
16

25

cawdrey, Release 0.1.6

FrozenBase (class in cawdrey.base), 15

frozendict (class in cawdrey), 10

FrozenOrderedDict (class in caw-
drey.frozenordereddict), 12

G

get () (cawdrey.base.FrozenBase method), 16

items () (cawdrey.base.FrozenBase method), 16

K

keys () (cawdrey.base.FrozenBase method), 16

M

module
cawdrey.alphadict, 7
cawdrey.nonelessdict, 13

N

NonelessDict (class in cawdrey.nonelessdict), 13
NonelessOrderedDict (class in caw-
drey.nonelessdict), 14

S

set_with_strict_none_check () (caw-
drey.nonelessdict.NonelessDict method),
13

set_with_strict_none_check () (caw-
drey.nonelessdict.NonelessOrderedDict
method), 14

sorted () (cawdrey.frozendict method), 10

Vv

values () (cawdrey.base.FrozenBase method), 16

26

Index

	Contents
	Other Dictionary Packages
	Installation
	AlphaDict
	bdict
	frozendict
	FrozenOrderedDict
	NonelessDict
	Base Class
	Downloading source code
	Building from source

	And Finally:
	Python Module Index
	Index

